Chem. Ber. 100, 3591 - 3598 (1967)

Stephan Pawlenko

Zur Thermochemie der metallorganischen Verbindungen, I

Thermochemische Werte der Aluminiumalkyle

Aus der Chemisch-Technischen Forschung der Schering AG, Zweigniederlassung Bergkamen (Eingegangen am 20. Mai 1967)

Unter Verwendung einer speziell konstruierten kalorimetrischen Bombe wird die Verbrennungsenthalpie für Äthyl-, n-Propyl-, n-Butyl- bzw. Isobutylgruppen enthaltende Dialkylaluminiumhydride und Aluminiumtrialkyle bestimmt. Aus der Verbrennungsenthalpie werden die Bildungsenthalpien für den flüssigen Zustand dieser Dialkylhydride und Trialkyle, die Wärmetönungen der Anlagerung von Äthylen, Propen, Buten und Isobuten an die entsprechenden Dialkylaluminiumhydride sowie die Wärmetönungen der AlR₃-Bildung durch die Verdrängung von Isobuten aus AlH(i-C₄H₉)₂ mittels Äthylen, Propen und Buten berechnet.

Dialkylaluminiumhydride und Aluminiumtrialkyle besitzen eine außerordentlich starke Affinität zum Sauerstoff. So reagieren sie z. B. mit O₂, H₂O und R'OH in folgender Weise:

Ein direktes Zusammenbringen der die C-Zahlen 1 bis 4 aufweisenden Dialkylaluminiumhydride und Aluminiumtrialkyle mit Luft, Wasser oder niederen Alkoholen bewirkt eine außerordentlich heftige Reaktion unter Entzündung oder sogar Explosion.

Bei der Verbrennung in Sauerstoff entstehen α -Al₂O₃, CO₂ und H₂O nach folgenden Gleichungen:

AIH(
$$C_nH_{2n+1}$$
)₂ (fl.) + (3n + 1.5) O₂ (gasf.) \longrightarrow (1)
0.5 Al₂O₃ (fest) + (2n + 1.5) H₂O (fl.) + 2nCO₂ (gasf.)
 $-\Delta \nu = n + 1.5$

Al(
$$C_nH_{2n+1}$$
)₃ (fl.) + (4.5 n + 1.5) O₂ (gasf.) \longrightarrow (2)
0.5 Al₂O₃ (fest) + (3n + 1.5) H₂O (fl.) + 3 n CO₂ (gasf.)
 $-\Delta y = 1.5 \text{ n} + 1.5$

Obwohl Aluminiumalkyle bereits eine beachtliche industrielle Verwendung gefunden haben, sind nur vereinzelte thermochemische Untersuchungen bekannt geworden. Al(CH₃)₃ wurde von Long und Norrish¹) (Verbrennungsenthalpie) sowie von Mortimer und Sellers²⁾ (Bildungsenthalpie aus der Umsetzung von Al(CH₃)₃ mit CH₃CO₂H) untersucht. Schaulow und Mitarbb. bestimmten $-\Delta H_{\nu}^{0}$ und ΔH_{B}^{0} für $AlH(C_2H_5)_2^{3}$, $Al(C_2H_5)_3^{3}$, $AlH(i-C_4H_9)_2^{3}$ und $Al(i-C_4H_9)_3^{4}$. Fic⁵ verwendete für die Bestimmung von $-\Delta H_{\nu}^{0}$, ΔH_{Bgas}^{0} , E(Al-C) und D(Al-Et) von $Al(C_{2}H_{5})_{3}$ die Verbrennung einer Lösung in n-Heptan. Außerdem wurden die Verbrennungswärmen für Al(C₂H₅)₃⁶⁾ und Al(i-C₄H₉)₃⁷⁾ ohne experimentelle Belege mitgeteilt.

Die experimentellen Schwierigkeiten der bisherigen Verbrennungstechnik verzögerten die thermochemische Untersuchung von Aluminiumalkylen. Man kann diese nur in solchen Glasampullen, die mindestens 25 at Druck aushalten, in die kalorimetrische Bombe eintragen. Um die Ampulle zu geeigneter Zeit zum Zerplatzen zu bringen und dabei eine ausreichende Substanzverbrennung zu gewährleisten, bedient man sich verschiedener Hilfsstoffe, wie Collodium^{3,4,8)}, Mg-Draht¹⁾ oder Polyäthylen-Folie^{3,5,8)}. Diese Hilfssubstanzen liefern eine bis zu 100 cal betragende und mit vielen Unsicherheitsfaktoren behaftete Zusatzkomponente der Wärmebilanz. Dazu kommt, daß das voluminöse Al₂O₃ sich an der Bruchstelle der Ampulle bildet, die noch nicht verbrannten Anteile des Alkyls einschließt und eine unvollkommene Verbrennung, gegebenenfalls unter Ruß- statt CO₂-Bildung, verursacht.

Eine Neugestaltung der kalorimetrischen Bombe beseitigt die bisherigen Schwierigkeiten (Abbild.). Das im Versuchsteil näher beschriebene Verfahren besteht darin, daß man die das Aluminiumalkyl enthaltende Ampulle durch ein Fallgewicht bei der Initialzündung fein zertrümmert und dabei die Voraussetzung einer vollkommenen Verbrennung schafft. Eine solche Einrichtung ist auch für andere sauerstoffempfindliche Substanzen geeignet. Man verringert die Fehlerquellen beträchtlich und erhält gut reproduzierbare Meßwerte.

Die Dialkylaluminiumhydride und Aluminiumtrialkyle der C-Zahlen 2 bis 4 sind Gegenstand dieser Untersuchung. In Tab. 1 werden die von uns ermittelten $-\Delta H_{v}^{0}$. $\Sigma \Delta H_B^0$ (Al₂O₃, CO₂, H₂O)- und ΔH_B^0 (fl.)-Werte für diese Substanzen angegeben. Darüber hinaus sind hier die bei der Olefin-Anlagerung an die Dialkylaluminiumhydride und die bei der Verdrängungsreaktion

$$AlH(i-C_4H_9)_2 + 3 C_nH_{2n} \longrightarrow Al(C_nH_{2n+1})_3 + 2 i-C_4H_8$$

auftretenden Wärmeeffekte berechnet.

¹⁾ L. H. Long und R. G. Norrish, Trans. Roy. Soc. Edinburgh A. 241, 587 (1949).

²⁾ C. T. Mortimer und P. M. Sellers, J. chem. Soc. [London] 1963, 1978.

³⁾ J. H. Schaulow, G. O. Schmyrewa und W. S. Tubjanskaja, Ž. fiz. Chim. (Z. phys. Chem.) 39, 105 (1965), C. A. 62, 9868 a (1965).

⁴⁾ J. H. Schaulow, W. S. Tubjanskaja, H. W. Jewstegnejewa und G. O. Schmyrewa, Z. fiz. Chim. (Z. phys. Chem.) 38, 1779 (1964), C. 1965, 14-0325.

⁵⁾ V. Fic, Chem. Prumysl 16, 607 (1966), C. A. 66, 37296 g (1967).
6) G. F. Nobis, Ind. Engng. Chem. 49, 45 A (1957).

⁷⁾ J. E. Knap, R. E. Leech, A. I. Reid und W. S. Tamplin, Ind. Engng. Chem. 49, 874 (1957).

⁸⁾ W. F. Lautsch, A. Tröber, H. Körner, K. Wagner, R. Kaden und S. Blase, Z. Chem. 6, 171 (1966).

Zwischen den thermochemischen Größen bestehen die Beziehungen:

$$-\Delta H_{\mathbf{v}}^{0} = \frac{-\Delta U}{1000} \cdot \mathbf{M} + \Delta \mathbf{v}RT \tag{3}$$

$$\Delta H_{\rm R}^{0}({\rm fl.}) = \Sigma \Delta H_{\rm R}^{0}({\rm Al}_{2}{\rm O}_{3}, {\rm CO}_{2}, {\rm H}_{2}{\rm O}) + (-\Delta H_{\rm V}^{0})$$
 (4)

$$-\Delta W$$
 (Olefin-Anlagerung bzw. -Verdrängung) = (5)

$$-\Delta H_{v}^{0}$$
 (Ausgangssubstanzen) $-(-\Delta H_{v}^{0})$ (Endprodukte)

Dabei werden die folgenden Bezugswerte in kcal/Mol berücksichtigt:

$$RT \approx 0.6$$

$$\Delta H_{8}^{0} \text{ H}_{2}\text{O (I)} = -68.315^{9}$$

$$\Delta H_{8}^{0} \text{ CO}_{2} \text{ (g)} = -94.052^{9}$$

$$\Delta H_{8}^{0} \text{ Al}_{2}\text{O}_{3} \text{ (s)} = -400.4^{10}$$

$$-\Delta H_{9}^{0} \text{ C}_{2}\text{H}_{4} = -337.23^{11}$$

$$-\Delta H_{9}^{0} \text{ C}_{3}\text{H}_{6} = -491.9^{11}$$

$$-\Delta H_{9}^{0} \text{ n}_{4}\text{-C}_{4}\text{H}_{8} = -649.45^{11}$$

$$-\Delta H_{9}^{0} \text{ i}_{5}\text{-C}_{4}\text{H}_{8} = -645.43^{11}$$

Die Verbrennungswärme der Aluminiumalkyle ist mit derjenigen der Kohlenwasserstoffe vergleichbar. Bei den Verbindungen, die C_2-C_4 -Alkyl-Reste enthalten, liegt sie zwischen 10000 und 11000 cal/g: 10469 cal/g für AlH(C_2H_5)₂ und 10886 cal/g für Al($n-C_4H_9$)₃. Die höheren Homologen besitzen einen Heizwert über 11000 cal/g. So z. B. beträgt $-\Delta U$ von Al($n-C_6H_{13}$)₃ 11099 cal/g¹²).

Die Bildungsenthalpie $\Delta H_{\rm B}^0$ (fl.) ist innerhalb der homologen Reihe C_1-C_4 abhängig von der C-Zahl.

Tab. 1. Thermochemische Werte der Dialkylaluminiumhydride und Aluminiumtrialkyle in kcal/Mol

Substanz	$-\Delta H_{f v}^{f 0}$	$\Sigma\Delta H_{\mathrm{B}}^{0}$ (Al ₂ O ₃ , CO ₂ , H ₂ O)	$\Delta H_{ m B}^0$ (fl.)	-ΔW der Olefin-An- lagerung	—∆W der Verdrängung
A1H(C ₂ H ₅) ₂	903.4 ± 1.6	- 952.1	-48.7 ± 1.6	20.3 ± 2.3	
$AlH(n-C_3H_7)_2$	1218.8 ± 0.8	-1276.9	-58.1 ± 0.8	23.7 ± 0.9	
$AlH(n-C_4H_9)_2$	1534.0 ± 1.3	-1601.6	-67.6 ± 1.3	21.4 ± 1.6	
$AlH(i-C_4H_9)_2$	1532.5 ± 1.0	-1601.6	-69.1 ± 1.0	19.6 ± 2.8	
Al(CH ₃) ₃			-36.1^{2}		
$Ai(C_2H_5)_3$	1220.3 ± 0.7	-1276.9	-56.6 ± 0.7		$\textbf{33.0} \pm \textbf{2.5}$
$Al(n-C_3H_7)_3$	1687.0 ± 0.1	-1764.0	-77.0 ± 0.1		30.3 ± 1.9
$Al(n-C_4H_9)_3$	2162.1 ± 0.3	-2251.1	-89.0 ± 0.3		28.1 ± 2.1
$Al(i-C_4H_9)_3$	2158.3 \pm 1.8	-2251.1	-92.8 ± 1.8		

⁹⁾ F. D. Rossini, D. D. Wagman und W. H. Evans, Selected Values of Chemical Thermodynamic Properties, Circular 500 of the National Bureau of Standards, Washington 1952.

12) S. Pawlenko, unveröffentl.

¹⁰⁾ A. D. Mah, J. physic. Chem. 61, 1572 (1957).
11) F. D. Rossini, R. L. Arnett, B. N. Braun und G. C. Pimentel, Selected Values of Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds, Cornegie Institute of Technology, Pittsburg/Pensilvania 1953.

Der Tab. 1 ist ferner zu entnehmen, daß die Wärmetönung der Olefin-Anlagerung an das Dialkylhydrid¹³⁾ etwa 20 kcal/Mol und die der Isobuten-Verdrängung¹⁴⁾ etwa 30 kcal/Mol beträgt. Dadurch bekommt der günstige Verlauf dieser für die technische Aluminiumalkyl-Herstellung wichtigen Reaktionen seine thermochemische Begründung.

Wir haben uns bemüht, möglichst reine Präparate für die Verbrennung anzuwenden. Einige Schwierigkeiten prinzipieller Art standen uns im Wege. Ein hydridfreies Aluminiumtrialkyl konnte bis jetzt noch nicht dargestellt werden, weil bei der für Reindarstellung erforderlichen Destillation trotz aller Vorsichtsmaßnahmen stets eine Olefin-Abspaltung nach

$$Al(C_nH_{2n+1})_3 \longrightarrow AlH(C_nH_{2n+1})_2 + C_nH_{2n}$$

erfolgt und so einen merklichen Hydridgehalt des Präparates mit sich bringt.

Bereits O₂-Spuren im Schutzgas führen zur Reaktion

$$Al(C_nH_{2n+1})_3 + 0.5 O_2 \longrightarrow (C_nH_{2n+1})_2AlOC_nH_{2n+1},$$

so daß die "Aktivität"¹⁵⁾ der Dialkylaluminiumhydride und Aluminiumtrialkyle nie 100% erreicht.

Bei den Äthyl-Al-Verbindungen macht sich die sogenannte "Aufbaureaktion", d. h. die Anlagerung von Äthylen an eine Alkylgruppe am Al bemerkbar. So enthält $Al(C_2H_5)_3$, gleichgültig ob es durch Direktsynthese aus Al, H_2 und C_2H_4 oder nach der Verdrängungsmethode mit C_2H_4 hergestellt ist, stets eine kleine Menge der Aufbauprodukte $Al(n-C_4H_9)_3$, $Al(n-C_6H_{13})_3$ usw.

Die hier ermittelten thermochemischen Werte sind trotzdem als durchaus brauchbar anzusehen, wenn sie sich auch um einige cal von denen der bis jetzt nicht zur Verfügung stehenden "absolut reinen" Substanzen unterscheiden mögen.

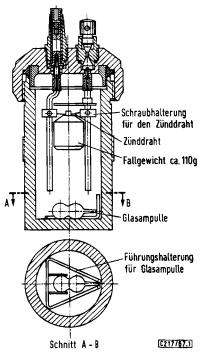
In der nächsten Arbeit dieser Reihe werden die thermochemischen Werte der Alkylaluminiumhalogenide einschließlich der Bindungsenergien der Al-C-, Al-H-, Al-F-, Al-Cl-, Al-Br- und Al-J-Bindungen erörtert.

Es ist mir eine angenehme Pflicht, der Geschäftsleitung der Schering AG für die Förderung dieser Arbeit und für die Genehmigung zur Veröffentlichung bestens zu danken.

Mein Dank gebührt auch Herrn P. Neumann, der sich an der Versuchsausführung aktiv beteiligte.

¹³⁾ K. Ziegler, H. Martin und F. Kroll, Liebigs Ann. Chem. 629, 14 (1960).

¹⁴⁾ K. Ziegler, H. G. Gellert, H. Lehmkuhl, W. Pfuhl und K. Zosel, Liebigs Ann. Chem. 629, 1 (1960).


¹⁵⁾ Über die Definition und Bestimmung der "Aktivität": K. Ziegler und H. G. Gellert, Liebigs Ann. Chem. 629, 20 (1960).

Beschreibung der Versuche

1. Kalorimetrische Einrichtung

Für die Messungen verwenden wir ein anisothermes Flüssigkeitskalorimeter der Firma Janke & Kunkel IKA C 210. Die dazugehörige IKA Kalorimeter-Bombe 7 wird von uns gemäß der Abbild. umgeändert. Man begradigt die Zündpole, entfernt die Haltevorrichtung für das Quarz- bzw. Platinschälchen, montiert an den begradigten Polen je eine Halteschraube für den das Fallgewicht tragenden Zünddraht und bringt eine Halteführung für die Glasampulle an. Bei der Zündung schmilzt der Zünddraht durch und das Fallgewicht fällt auf die Glasampulle. Von Bedeutung ist die Ampullenform. Flache oder deformierte Ampullen halten nur einen Druck von 5–10 at aus. Die Einzelkugeln sind zu beständig; sie widersetzen sich auch dem Fallgewicht. Die von uns angewandten Ampullen bestehen aus einer Doppelkugel. Sie können den Druck von 25–30 at aushalten, werden aber leicht zertrümmert.

Bei allen Verbrennungsversuchen benutzt man den "Rumfordschen Kniff", wobei die Temperatur der Kalorimeterflüssigkeit (2000.00 \pm 0.01 g H₂O) bei 24.00 \pm 0.05° und die Manteltemperatur bei 25.000 \pm 0.005° gehalten wird. Zur Ausführung der Messungen und zur Berechnung der Temperaturkorrekturen gelten die allgemein üblichen Vorschriften 8,16–18). Als Hilfssubstanzen dienen: Benzoesäure des National Bureau of Standards, Standard Sample 39 g ($-\Delta U = 6321$ cal/g für die Wägung an der Luft und Verbrennung bei 25°) und ICA Reineisen-Draht (Stärke 0.12 mm, $-\Delta U = 1.5$ cal/cm). Es werden ständig 25 at O_2 aufgepreßt.

¹⁶⁾ F. Becker und A. Magnus in Methoden der organ. Chemie (Houben-Weyl), IV. Aufl., Bd. III/1, S. 485, Georg Thieme Verlag, Stuttgart 1955.

¹⁷⁾ W. A. Roth und F. Becker, Kalorimetrische Methoden zur Bestimmung chemischer Reaktionswärmen, Vieweg Verlag, Braunschweig 1956.

¹⁸⁾ DIN Vorschrift Nr. 51900 vom April 1966.

Tab. 2. Experimentelle Ergebnisse der Verbrennung von Dialkylaluminiumhydriden und Aluminiumtrialkylen. q der Hilfssubstanz (Reincisen-Draht) durchweg 9 cal

Substanz	Vers.	Einwaage (g)	$\Delta T_{\rm exp.}$	Korrektur (°C)	ΔT _{korr} .	CO ₂	CO_2 $C^{a)}$ $C \cdot \Delta T$ gef. (%) (cal/Grad) (cal)	$C \cdot \Delta T$ (cal)	_ΔU (cal/g)	$-\Delta U$ Mittel (cal/g)	Δν <i>RT</i> (kcal/ Mol)	-ΔH ⁰ ₂ (kcal/ Mol)
AIH(C2H5)2	- 2 e 4	0.6547 0.6901 0.6422 0.5613	2.797 2.932 2.733 2.990	0.0188 0.0208 0.0132 0.0161	2.8158 2.9528 2.7462 2.4061	99.2 98.9 98.8	2446	6887.4 7222.5 6717.2 5885.3	10506 10453 10446 10469	10469 ± 23	2.1	903.4 \pm 1.6
AlH(n-C ₃ H ₇₎₂	3 2 3	0.5560 0.9042 0.6277	2.401 3.907 2.708	0.0142 0.0268 0.0233	2.4152 3.9338 2.7313	99.7 99.2 99.6	2454	5926.8 9653.5 6702.6	10644 10666 10664	10658 ± 9	2.7	1218.8 \pm 0.8
AlH(n-C4H9)2	3 2 -	0.8119 0.7666 0.5487	3.539 3.342 2.387	0.0415 0.0307 0.0302	3.5805 3.3727 2.4172	99.6 99.3 99.5	2446	8757.9 8249.6 5912.5	10776 10750 10759	10762 ± 11	3.6	1534.0 ± 1.3
AlH(i-C4H9)2	= 7 E 4	0.5092 0.4874 0.5029 0.6069	2.223 2.125 2.199 2.658	0.0204 0.0188 0.0146 0.0142	2.2434 2.1438 2.2136 2.6732	98.9 98.8 99.2 98.9	2446	5487.4 5243.7 5414.5 6538.6	10759 10740 10749	10752 ± 9	3.6	1532.5 ± 1.0

0.5682	2.465		33 98.9 84 99.2	2446	6074.2 6429.1	10674	10671 ± 7	2.7	1220.3 ± 0.7
2.230	0	0.0110 2.2410			5481.5	10670			
0.5744 2.495 0.0	0				6143.9	10680			
2.852	0	0.0187 2.87		2446	7021.7	10776	10777 ± 1	3.6	1687.0 ± 0.1
	Ö	0.0215 2.8855	55 99.3		7057.9	10777			
	\sim				6455.7	10779			
		0.0195 2.50			6130.9	10776			
2.118				2446	5209.7	10883	10886 ± 2	4.5	2162.1 ± 0.3
2.565					6322.2	10887			
0.4702 2.083 0.0134		134 2.0964	64 99.1		5127.8	10886			
0.4259 1.883 0.0115		1.8995			4646.2	10888			
	_			2446	4621.2	10855	10867 ± 11	4.5	2158.3 ± 1.8
0.5418 2.394 0.0		0.0171 2.4142			5905.1	10882			
0.5060 2.241 0.0	_	0.0104 2.25			5506.9	10865			

00. • Närmekapazität des Kalorimeters.

2. Eingesetzte Substanzen

a) Dialkylhydride

 $AlH(C_2H_5)_2$, Sdp._{0.4} 77 – 79°, Al 30.5 % (ber. 31.8), Aktivität 96.1 %, Zers. zu 736 Nml Gas/g (ber. 775), davon in Vol % H₂ 33.0 (ber. 33.8), C₂H₆ 65.4 (ber. 66.4), n-C₄H₁₀ 1.1, Hydridgehalt ca. 96%.

 $AlH(n-C_3H_7)_2$ undestilliert, Al 22.7% (ber. 23.6), Aktivität 98.7%, Zers. zu 568 Nml Gas/g (ber. 582), davon in Vol. % H_2 33.8 (ber. 33.8), C_2H_6 0.8, C_3H_8 64.9 (ber. 66.2), $n-C_4H_{10}$ 0.3, Hydridgehalt ca. 97%.

 $AlH(n-C_4H_9)_2$ undestilliert, Al 18.3% (ber. 19.0), Aktivität 95.6%, Zers. zu 427 Nml Gas/g (ber. 460), davon in Vol. % H₂ 33.9 (ber. 34.3), n-C₄H₁₀ 64.9 (ber. 65.7), i-C₄H₁₀ 1.2, Hydridgehalt 96%.

 $AlH(i-C_4H_9)_2$, Sdp._{0.4} 106°, Sdp.₁ 114°, Sdp.₂ 126°, Al 19.0% (ber. 19.0), Aktivität 99.4%, Zers. zu 464 Nml Gas/g (ber. 464), davon in Vol. % H₂ 33.7 (ber. 34.0), C₂H₆ 0.2, n-C₄H₁₀ 0.2, i-C₄H₁₀ 65.4 (ber. 66.0), Hydridgehalt ca. 99%.

b) Trialkyle

 $Al(C_2H_5)_3$, Sdp._{0.5} 55°, Sdp.₁ 62°, Al 23.6% (ber. 23.6), Aktivität 99.5%, Zers. zu 582 Nml Gas/g (ber. 582), davon in Vol. % H₂ 2.5, C₂H₆ 95.5, n-C₄H₁₀ 1.7.

 $Al(n-C_3H_7)_3$, Sdp._{0.1} 65°, Sdp.₁ 78°, Sdp.₂ 85°, Al 17.3% (ber. 17.3), Aktivität 93.6%, Zers. zu 415 Nml Gas/g (ber. 422), davon in Vol. % H_2 1.1, C_3H_8 98.6.

 $Al(n-C_4H_9)_3$, Sdp.₁ 98°, Sdp.₂ 119°, Al 13.6% (ber. 13.6), Aktivität 94.9%, Zers. zu 319 Nml Gas/g (ber. 325), davon in Vol. % H₂ 2.2, C₂H₆ 2.1, n-C₄H₁₀ 94.8, i-C₄H₁₀ 0.9.

 $Al(i-C_4H_9)_3$, Sdp._{0.4} 34°, Sdp.₁ 42°, Sdp.₂ 48°, Al 13.6% (ber. 13.6), Aktivität 98.0%, Zers. zu 329 Nml Gas/g (ber. 329), davon in Vol. % H_2 1.2, C_2H_6 1.4, $i-C_4H_{10}$ 96.6.

3. Experimentelle Ergebnisse und ihre Erläuterung

Tab. 2 gibt die Zusammenstellung der experimentellen Ergebnisse wieder. Etwa 0.5 g Substanz werden verbrannt. Die Meßdauer beträgt 25-30 Min., davon entfallen je 5 Min. für den Vor- und Nachversuch und 15-20 Min. für den Hauptversuch. Der größte Teil der Verbrennungswärme wird bei uns bereits innerhalb der 1. Minute des Hauptversuches an die kalorimetrische Flüssigkeit abgegeben. Die Anwesenheit des Fallkörpers verlangsamt aber die Restwärmeabgabe, so daß der Hauptversuch hier im ganzen länger als üblich ist.

 ${
m CO_2}$ wird bei einer langsamen (2-3 Stdn.) Entspannung der kalorimetrischen Bombe in bekannter Weise mittels Gaseinleitung in KOH-Lösung gravimetrisch erfaßt. Die ermittelten ${
m CO_2}$ -Werte liegen zwischen 98.8 und 99.7%. Man findet keine Rußablagerung in der Bombe. Es ist sicher nicht angebracht, das gegenüber 100% fehlende ${
m CO_2}$ als Ergebnis einer unvollständigen Substanzverbrennung zu betrachten, sondern vielmehr anzunehmen, daß die Differenz zum ber. ${
m CO_2}$ -Wert überwiegend auf Erfassungsmängeln beruht.

Die Korrektur auf die HNO₃-Bildung beträgt bei unseren unter sorgfältiger O₂-Spülung der Apparatur ausgeführten Versuchen 1 bis 3 cal. Auf die Berücksichtigung dieser Korrektur wird hier in Übereinstimmung mit 1. c. 1) verzichtet, und zwar deshalb, weil eine eventuell vorhandene, minimale und quantitativ nicht erfaßbare Rußbildung den Effekt der HNO₃-Bildung aufhebt.

Bei allen Versuchen werden einheitlich 6 cm Reineisen-Draht benutzt, so daß 9 cal jedesmal zum Abzug von der Gesamtmenge der kalorimetrischen Wärme kommen. Die Verbrennungswärme wird dann durch eine einfache Formel wiedergegeben:

$$-\Delta U = \frac{C \cdot \Delta T_{\text{korr.}} - 9}{\text{Einwaage}} \text{ cal/g}$$
 [217/67]